Задание 19 ЕГЭ 2024 по математике (профиль) - практика




Сборник практических заданий №19 для ЕГЭ по профильной математике (профилю) в 2024 году. Сборник представляет из себя PDF файл, в котором собраны все задания этого типа. В конце документа приведены ответы и подробные решения (а также видеоразборы) для каждого задания, благодаря которым вы сможете проверить себя. 

Подробно разберёмся, как решать любые задания такого типа на ЕГЭ, и потренируемся на практике. Обсудить решение заданий вы можете в комментариях ниже.

Примеры заданий №19 — числа и их свойства

Пример №1. а) Можно ли вычеркнуть несколько цифр из числа 123456789 так, чтобы получилось число, кратное 72? б) Можно ли вычеркнуть несколько цифр из числа 846927531 так, чтобы получилось число, кратное 72? в) Какое наибольшее количество цифр можно вычеркнуть из числа 124875963 так, чтобы получилось число, кратное 72?

Ответ: а) да б) нет в) 5

Пример №2. На доске написано 35 различных натуральных чисел, каждое из которых либо чётное, либо его десятичная запись оканчивается на цифру 3. Сумма написанных чисел равна 1062. а) Может ли на доске быть ровно 27 чётных чисел? б) Могут ли ровно два числа на доске оканчиваться на 3? в) Какое наименьшее количество чисел, оканчивающихся на 3, может быть на доске?

Ответ: а) да б) нет в) 6

Пример №3. На доске написано 100 различных натуральных чисел, сумма которых равна 5120. а) Может ли оказаться, что на доске написано число 230? б) Может ли оказаться, что на доске нет числа 14? в) Какое наименьшее количество чисел, кратных 14, может быть на доске?

Ответ: а) нет б) нет в) 4

Пример №4. В нескольких одинаковых бочках налито некоторое количество литров воды (необязательно одинаковое). За один раз можно перелить любое количество воды из одной бочки в другую. а) Пусть есть четыре бочки, в которых 29, 32, 40, 91 литров. Можно ли не более чем за четыре переливания уравнять количество воды в бочках? б) Пусть есть семь бочек. Всегда ли можно уравнять количество воды во всех бочках не более чем за пять переливаний? в) За какое наименьшее количество переливаний можно заведомо уравнять количество воды в 26 бочках?

Ответ: а) да б) нет в) 25

Пример №5. Даны различные натуральные числа, запись которых содержит цифры 1 и 6, либо только одну из этих цифр. а) Может ли сумма всех чисел быть равной 173? б) Может ли сумма всех чисел быть равной 109? в) Какое наименьшее количество чисел могло быть, сумма которых равна 1021?

Ответ: а) да б) нет в) 6

Пример №6. На доске написано несколько различных натуральных чисел, которые делятся на 3 и оканчиваются на 4. а) Может ли их сумма составлять 282? б) Может ли их сумма составлять 390? в) Какое наибольшее количество чисел могло быть на доске, если их сумма равна 2226?

Ответ: а) да б) нет в) 9

Пример №7. С натуральным числом проводят следующую операцию: между каждыми двумя его соседними цифрами записывают сумму этих цифр (например, из числа 1923 получается число 110911253). а) Приведите пример числа, из которого получается 2108124117. б) Может ли из какого-нибудь числа получиться число 37494128? в) Какое наибольшее число, кратное 11, может получиться из трёхзначного числа?

Ответ: а) 2847 б) нет в) 9167169

Пример №8. а) Существует ли конечная арифметическая прогрессия, состоящая из пяти натуральных чисел, такая, что сумма наибольшего и наименьшего членов этой прогрессии равна 99? б) Конечная арифметическая прогрессия состоит из шести натуральных чисел. Сумма наибольшего и наименьшего членов этой прогрессии равна 9. Найдите все числа, из которых состоит эта прогрессия. в) Среднее арифметическое членов конечной арифметической прогрессии, состоящей из натуральных чисел, равно 6,5. Какое наибольшее количество членов может быть в этой прогрессии?

Ответ: а) нет б) 2 3 4 5 6 7 в) 12

Пример №9. В каждой клетке квадратной таблицы 6×6 стоит натуральное число, меньшее 7. Вася в каждом столбце находит наименьшее число и складывает шесть найденных чисел. Петя в каждой строке находит наименьшее число и складывает шесть найденных чисел. а) Может ли сумма у Пети получиться в два раза больше, чем сумма у Васи? б) Может ли сумма у Пети получиться в шесть раз больше, чем сумма у Васи? в) В какое наибольшее число раз сумма у Пети может быть больше, чем сумма у Васи?

Ответ: а) да б) нет в) 31/6

Пример №10. Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 10 раз больше, либо в 10 раз меньше предыдущего. Сумма всех членов последовательности равна 3024. а) Может ли последовательность состоять из двух членов? б) Может ли последовательность состоять из трёх членов? в) Какое наибольшее количество членов может быть в последовательности?

Ответ: а) нет б) да в) 549

Смотреть в PDF:


Для просмотра установите Adobe Reader и обязательно вернитесь для просмотра файла :).

Или прямо сейчас: cкачать в pdf файле

Решение всех заданий №19 из банка ФИПИ по профильной математике



У вас недостаточно прав для комментирования

  Наверх